Revisiting Restless Legs Syndrome and Leg Cramps in the Renal Patient

Vivian Lee, B.Sc.Phm., R.Ph.
Clinical Pharmacist, Peterborough Regional Renal Program
9th Annual Nephrology for Dialysis Health Care Providers Symposium
Wednesday November 20, 2013
Agenda

• 2 patient cases

• Restless Legs Syndrome in Chronic Kidney Disease (CKD)

• Leg cramps in CKD
 – Using Quinine and its concerns

• Questions & Discussion
Case #1

• +++ comorbidities
 – Dialysis dependent ESRD
 – Renal cell carcinoma → metastasis to pancreas
 – Depression, anxiety
 – Hashimoto thyroiditis

• Some of her current medications:
 – Ondansetron PRN
 – Atorvastatin SCH
 – Sunitinib SCH (for pancreatic ca)
 – Trazodone PRN
 – Mirtazapine PRN
 – Pramipexole PRN
 – Quinine PRN
Case #2

- Irresistible urge to move his legs
 - “want to step out of my dialysis machine”
- Poor sleep → poor quality of life
- Tried pramipexole (Mirapex®) 0.125 mg with little success
 - Drug probably dismissed as ineffective; discontinued
- Now on triazolam to help with sleep
- Anxious that he will become dependent on triazolam
Restless Legs Syndrome (RLS)
Pathophysiology of RLS

- Iron deficiency
- End-stage renal disease
- Diabetes Mellitus
- Parkinson Disease
- Drugs
- Rheumatic Disease
Pathophysiology of RLS

Iron deficiency

- Diabetes Mellitus
- Parkinson Disease
- End-stage renal disease
- Drugs
- Rheumatic Disease
Pathophysiology of RLS

- Iron deficiency
- Diabetes Mellitus
- End-stage renal disease
- Parkinson Disease
- Drugs
- Rheumatic Disease
Pathophysiology of RLS

- Iron deficiency
- Diabetes Mellitus
- Parkinson Disease
- End-stage renal disease
- Drugs
- Rheumatic Disease
Pathophysiology of RLS

- Iron deficiency
- End-stage renal disease
- Diabetes Mellitus
- Parkinson Disease
- Rheumatic Disease
- Drugs
Pathophysiology of RLS

- Iron deficiency
- Diabetes Mellitus
- Parkinson Disease
- Rheumatic Disease
- Drugs
- End-stage renal disease
Pathophysiology of RLS

- Iron deficiency
- Diabetes Mellitus
- End-stage renal disease
- Parkinson Disease
- Drugs
- Rheumatic Disease
RLS in End-Stage Renal Disease

• Sensory and motor dysfunction due to uremia
 – Nerve demyelination, distally
 – Sensory (e.g., RLS) occurs before motor (e.g., atrophy)
• Iron deficiency also plays a role
• Reported incidence in dialysis patients 6-60%
• Other reported associations
 – Dialysis duration
 – Body weight
 – Smoking history
RLS in End-Stage Renal Disease

• **Hallmark symptoms**
 – **U**rge to move the legs
 – **R**est or inactivity makes it worse
 – **G**etting up and going makes it better
 – **E**vening or night time onset (daytime also if severe)

• **Descriptors that patients use**
 – Sensation is deep-seated, bilateral, below knees
Managing RLS

Part 1: Assessment

- Adapted from BC Renal Agency
Managing RLS
Part 1: Assessment

Assessment

- Rule out mimic disorders
- Rule out drug-induced RLS
- Assess risk/contributing factors
 - Iron deficiency
 - Sleep deprivation
 - Positive family history
 - Rheumatoid arthritis or Sjogren’s
 - Pregnancy
Rule out mimic disorders

Mimic Conditions

- Movement disorders: akathisia, ADHD
- Restlessness secondary to anxiety, depression, psychotic disorders
- Local leg pathology, e.g. peripheral neuropathy, myelopathy, peripheral venous congestion
- Positional discomfort
Managing RLS
Part 1: Assessment

Assessment

- Rule out mimic disorders
- Rule out drug-induced RLS
- Assess risk/contributing factors
 - Iron deficiency
 - Sleep deprivation
 - Positive family history
 - Rheumatoid arthritis or Sjogren’s
 - Pregnancy
Drug-induced causes

Drug-induced RLS

Dopamine antagonists:
- Antipsychotics: pimozide, haloperidol, olanzapine, risperidone
- Metoclopramide, promethazine

Antidepressants:
- Mirtazapine (up to 28%)
- SSRI (<5%), e.g. citalopram, escitalopram, fluoxetine, paroxetine, sertraline
- SNRI’s (<5%), e.g. duloxetine, venlafaxine

Stimulants: alcohol, caffeine, nicotine
- Others: TCA’s, carbamazepine, lithium
Managing RLS
Part 1: Assessment

- Rule out mimic disorders
- Rule out drug-induced RLS
- Assess risk/contributing factors
 - Iron deficiency
 - Sleep deprivation
 - Positive family history
 - Rheumatoid arthritis or Sjogren’s
 - Pregnancy
Management of RLS
Part 2: Management

Initial Recommendation
- Discontinue or reduce offending drug, if feasible
- Correct iron deficiency – may prevent initial augmentation with dopaminergic therapy
- Encourage good sleep hygiene (see insomnia flowchart) [Click here for link](#)

Drug options!
Intermittent RLS

• **Levodopa/carbidopa (Sinemet®)**

• **Efficacy**
 – No consistent subjective improvement in RLS symptoms
 – Very small trials n=5, n=11 but randomized, double-blinded, placebo-controlled
 – Short acting ($t_{1/2}=1.5$ hrs), onset $\frac{1}{2}$ hr, augmentation effect

• **Safety?**
 – Generally well tolerated as reported in trials
 – Agitation, augmentation, dyspepsia, dizziness
Intermittent RLS

• Levodopa/carbidopa (Sinemet®) 100/25 mg tab
 – Start at ½ tab PO HS and/or dialysis, titrate to effect (max 200/50)
 – Doses > 200/50 increase risk of augmentation
 – If night time awakenings, try CR formulation
Daily RLS

- **Dopamine agonists: Pramipexole (Mirapex®)**
- **Efficacy**
 - Meta-analysis of 7 placebo-controlled RCTs totalling over 1200 patients
 - ↓ symptom severity, average 6.7 point improvement in IRLS score (>6 considered clinically important)
 - Longer-acting ($t_{1/2}$=8.5-12 hrs), less augmentation, onset 90-120 minutes
- **Safety**
 - Mild, transient side effects
 - Nausea, headache, somnolence, sleep attacks (rare)
 - Resolve in 10-14 days of treatment
Daily RLS

• Dopamine agonists: Ropinirole (Requip®)
• Efficacy
 – Meta-analysis of 5 placebo-controlled RCTs totalling over 900 patients
 – Average 4 point improvement on IRLS score (>6 considered clinically significant)
 – Longer acting ($t_{1/2}=6$-8 hrs), less augmentation, onset 90-120 minutes

• Safety
 – Same as pramipexole (Mirapex®)
Daily RLS

- Dopamine agonists
- Pramipexole (Mirapex®)
 - 0.125 mg PO 2 hours before HS or before dialysis
 - ↑ by 0.125 mg q7d to effect, max 0.75 mg/day

- Ropinirole (Requip®)
 - 0.25 mg PO 2 hours before HS or before dialysis
 - ↑ by 0.25 mg q7d to effect, max 4 mg/day
RLS with painful neuropathy

- **Gabapentin (Neurontin®)**
 - 100 mg PO HS
 - ↑ by 100 mg q7d to max 300 mg PO HS

- **Pregabalin (Lyrica®)**
 - 25 mg PO HS
 - ↑ by 25 mg q7d to max 75 mg PO HS
Refractory RLS

• Benzodiazepines
 – Generally avoid if possible; Beer’s Criteria
 – Clonazepam (Rivotril®) 0.5 mg PO HS, ↑ 0.5 mg q7d to max 7 mg PO HS

• Clonidine (Catapres®)
 – 0.05 mg PO HS if patient not hypotensive
Leg cramps
What about “leg cramps”?

• **Painful, sudden, involuntary** muscle tightness in foot, thigh or calf
• Relieved by **forceful stretching**
• Commonly experienced at night
What about “leg cramps”?

- **Etiologies:**
 - Idiopathic
 - Leg positioning; *prolonged sitting*
 - *Extracellular fluid volume depletion*
 - *Electrolyte disturbances*
 - Metabolic conditions *e.g.*, *diabetes, hypoglycemia, hypothyroidism, alcoholism*
 - *Drug related: diuretics (potassium-sparing and thiazide-like), inhaled LABA (e.g., salmeterol)*
 - Generalized muscle cramps: donepezil, *statins*
Managing Leg Cramps

• Non-pharmacological approaches are key

• Prevention
 – Physical activity
 – Stretching exercises
 – Proper foot gear
 – Ultrafiltration goals and target weights, diuretic use
 – Avoiding alcohol and caffeine
Managing Leg Cramps

• **Non-pharmacological approaches are key**

• **Treatment**
 – Walking or leg jiggling
 – Hot shower or warm tub bath
 – Ice massage
 – **Addressing any underlying disease-induced and drug-induced causes**
Drug Options

• Variable success
 – Diphenhydramine 12.5-50 mg PO HS
 – Vitamin E (weak evidence)
 – Gabapentin up to 300 mg daily and supplemental dose 100-300 mg after dialysis
 • Helpful if patient also has diabetic neuropathy
 – *always exhaust non-pharmacological measures first
What about Quinine?

• Approved by Health Canada only as an anti-malarial agent
• Marketed in Canada since 1951
Quinine

• Best studied drug for **nocturnal leg cramps** (no evidence for RLS)
• Found effective in some well-designed randomized trials
• Good response from patients anecdotally
• Seen in practice used for **nocturnal or dialysis-related leg cramps** (and RLS?)
 – 200-300 mg PO HS and/or qdialysis
 – Schedule I drug available only by prescription
The Problems with Quinine

- Potentially serious and/or life-threatening side effects
 - Cardiac arrhythmias
 - Thrombocytopenia
 - HUS-TTP (Hemolytic Uremic Syndrome-Thrombotic Thrombocytopenic Purpura)
 - Severe hypersensitivity reactions
The Issues with Quinine

- From the Canadian Adverse Reaction Reaction Newsletter April 2011, as of September 30, 2010:
 - Health Canada received 71 (voluntary) reports of serious ADRs suspected of being associated with quinine
 - 4 of the reports: quinine used as anti-malarial (648 mg PO q8h x 3-7 days)
 - 43 of the reports: quinine used for leg cramps, muscle cramps, nocturnal leg cramps (200-300 mg qhs)
 - 20 of these 43 reports: thrombocytopenia, SJS, vasculitis, cardiac arrhythmia
Time to Quit Quinine?

• From FDA Articles of Interest September 2012:
 – Quinine is not considered safe and effective for treatment or prevention of leg cramps – an “off-label use”
 – Narrow dosing window between therapeutic doses for malaria and toxicity
 – Unapproved quinine products removed from market in 2006
 – Associations with serious, life threatening ADRs, independent of dose and duration of use:
 • Thrombocytopenia
 • Hypersensitivity reactions
 • QT prolongation
Implications of Quinine in our dialysis/CKD population

<table>
<thead>
<tr>
<th>Risks with using Quinine</th>
<th>Inherent risk in our population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe thrombocytopenia</td>
<td>In general immunocompromised</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Receiving chemotherapy (e.g., G.S., S.S.) for:</td>
</tr>
<tr>
<td>Anemia</td>
<td>• Cancers</td>
</tr>
<tr>
<td></td>
<td>• Autoimmune diseases</td>
</tr>
<tr>
<td></td>
<td>• Rheumatologic diseases</td>
</tr>
</tbody>
</table>
Implications of Quinidine in our dialysis/CKD population

<table>
<thead>
<tr>
<th>Risks with using Quinidine</th>
<th>Inherent risk in our population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe thrombocytopenia</td>
<td>In general immunocompromised</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Receiving chemotherapy (e.g., G.S., S.S.) for:</td>
</tr>
<tr>
<td>Anemia</td>
<td>• Cancers</td>
</tr>
<tr>
<td></td>
<td>• Autoimmune diseases</td>
</tr>
<tr>
<td></td>
<td>• Rheumatologic diseases</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>Drug-induced causes</td>
</tr>
<tr>
<td></td>
<td>• Certain antibiotics (e.g., moxifloxacin)</td>
</tr>
<tr>
<td></td>
<td>• Certain antidepressants (e.g., trazodone)</td>
</tr>
<tr>
<td></td>
<td>• Antipsychotics (e.g., olanzapine)</td>
</tr>
<tr>
<td></td>
<td>• Certain antifungals (e.g., fluconazole)</td>
</tr>
<tr>
<td></td>
<td>• Certain antiemetics (e.g., ondansetron)</td>
</tr>
<tr>
<td></td>
<td>• Certain antiarrhythmics (e.g., amiodarone)</td>
</tr>
</tbody>
</table>
Implications of Quinine in our dialysis/CKD population

<table>
<thead>
<tr>
<th>Risks with using Quinine</th>
<th>Inherent risk in our population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe thrombocytopenia</td>
<td>In general immunocompromised</td>
</tr>
<tr>
<td>Neutropenia</td>
<td>Receiving chemotherapy (e.g., G.S., S.S.) for:</td>
</tr>
<tr>
<td>Anemia</td>
<td>• Cancers</td>
</tr>
<tr>
<td></td>
<td>• Autoimmune diseases</td>
</tr>
<tr>
<td></td>
<td>• Rheumatologic diseases</td>
</tr>
<tr>
<td>QT prolongation</td>
<td>Drug-induced causes</td>
</tr>
<tr>
<td></td>
<td>• Certain antibiotics (e.g., moxifloxacin)</td>
</tr>
<tr>
<td></td>
<td>• Certain antidepressants (e.g., trazodone)</td>
</tr>
<tr>
<td></td>
<td>• Antipsychotics (e.g., olanzapine)</td>
</tr>
<tr>
<td></td>
<td>• Certain antifungals (e.g., fluconazole)</td>
</tr>
<tr>
<td></td>
<td>• Certain antiemetics (e.g., ondansetron)</td>
</tr>
<tr>
<td></td>
<td>• Certain antiarrhythmics (e.g., amiodarone)</td>
</tr>
<tr>
<td>Dermatological hypersensitivities</td>
<td>Uremic pruritus</td>
</tr>
<tr>
<td>(SJS, cutaneous vasculitis, TEN)</td>
<td>Calciphylaxis – skin lesions</td>
</tr>
</tbody>
</table>
Current quinine users

• Weighing risk vs. benefit of continuing therapy

✓ Risks:
 ✓ Assess inherent risks for bone marrow suppression, QT prolongation, hypersensitivity reactions
 ✓ Is patient capable of understanding these risks and making an informed decision about whether or not to continue therapy?

✓ Benefits:
 ✓ What is the patient’s response to quinine?
 ✓ Has it resulted in significant improvements in quality of life that no other intervention can accomplish?
 ✓ Attempted and failed all other measures?
Time to Quit Quinine

✓ Exhaust non-pharmacological interventions
 ✓ Balance between prevention and treatment
✓ Manage underlying disease-induced causes
✓ Eliminate underlying drug-induced causes wherever possible
Time to Quit Quinine

✓ Exhaust non-pharmacological interventions
 ✓ Balance between prevention and treatment
✓ Manage underlying disease-induced causes
✓ Eliminate underlying drug-induced causes wherever possible
✓ If possible:

Discontinue Quinine
Back to the cases
Case #1

• **+++ comorbidities**
 - Renal cell carcinoma
 - Depression
 - Hashimoto thyroiditis

• **Current medications:**
 - Sunitinib SCH (renal cell cancer)
 - Ondansetron prn
 - Quinine prn
 - Trazodone prn
 - Mirtazapine prn
 - Atorvastatin SCH
 - Pramipexole prn

 - Hypothyroidism → Metabolic causes of leg cramps
 - Neutropenia thrombocytopenia
 - QT prolonging effects.
 - Trazodone stopped
 - Drug-induced RLS (up to 28%)
 - Held. Follow up in 2 weeks – “cramps were better”
 - RLS responding to therapy
Case #2

- Irresistible urge to move his legs
 - “want to step out of my dialysis machine”
- Poor sleep → poor quality of life
- Tried pramipexole (Mirapex®) 0.125 mg with little success
 - Max dose of pramipexole → 0.75 mg
- Now on triazolam to help with sleep
- Anxious that he will become dependent on triazolam
 - Sleep quality improved, attempting to taper off triazolam
Summary

• Important differences between Restless Legs Syndrome (RLS) and leg cramps and their implications on treatment approach

• Determine underlying disease- and drug-induced causes of RLS and leg cramps often opens up more treatment options

• Difficult to mitigate risks of quinine as they are independent of dose and duration of use – should never be the first choice

• **Quitting Quinine** is a decision of the health care team as much as it is of the patient
Thank you for attending!

"You think you have problems? I have restless leg syndrome in all 1000 legs."
References

• Palmer, BF and Heinrich, WL. Uremic polyneuropathy. In: UpToDate, Berns, JS (Ed), UpToDate, Waltham, MA, 2013.

• Tarsy, D. Treatment of restless legs syndrome in adults. In: UpToDate, Hurtig, HI and Benca, R (Ed), UpToDate, Waltham, MA, 2013.

• U.S. Food and Drug Administration. Serious risks associated with using quinine to prevent or treat nocturnal leg cramps (September 2012). Last updated Aug 31, 2012. Accessed on Aug 21, 2013 at: http://www.fda.gov/ForHealthProfessionals/ArticlesofInterest/ucm317811.htm